
NONSTATIO~~Y ROTATIONS FLOW OVER A CASCADE OF 
TflIN OSCILLATING AIRFOILS 

(NBUSTANOVIVSBIISIA VIKGUEVOI POTOK VOKRUG RESHETKI 

TBNKIKE VIB~~UUIUSnCEIK~ PRGFILEI) 

PMM Vol. 25, No.5, 1961, pp. 851-857 

G. S. SAHOILOVICH 
(Moscow) 

(Received July 6, 1961) 

In f 1 1 , the solution of the problem of flow over a cascade of thin 
oscillating airfoils is investigated with the help of the acceleration 
potential, which is represented in the form of a series. 

Below, an integral representation of the complex acceleration poten- 
tial is introduced. An analysis of particular cases is not given; this 
is done in [ 1 1 , where a bibliography is also given. Here, as a particu- 
lar case, only the problem of nonstationary rotational flow over a 
cascade of thin airfofrs (a cascade in a vertical gust) is investigated. 

1. L-et us consider a cascade of thin, slightly cambered airfoils 
situated in the plane of the complex variable i’ = < -F iq (Fig. 1). ‘Ihe 

axis of the cascade is inclined at the angle @ to the axis of the 
abscissa. The gap is denoted by t, and the chord of the profiles will be 
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taken equal to b = 2. 

Let us consider the problem of flow of an incompressible fluid 
approaching with a small angle of attack. The oncoming flow may, in 
general, be rotational. The airfoils of the cascade may be oscillating 
with small amplitude. 

We shall denote the component of velocity along the [-axis at up- 
stream infinity by U and take it to be constant. The velocity component 
in the q-direction at infinity may be varying with time, but in conform- 
ity with the assumption stated above that v << II in the flow (with the 
exception of singular points on the noses of the airfoils). 

Then Euler’s equations for the nonstationa~ motion may be linearized 
and put in the form 

To Equations (1.1) must be added the continuity equation 

g+$zo (1.2) 

In these equations, u is the perturbation velocity component, addi- 
tional to II. 

To solve the problem we introduce the complex acceleration potential 

w (5) = cp + i9, dw 
ag - ia, = z (1.8) 

The acceleration 
relation 

potential is related to the pressure by the obvious 

cp = --pp + const (1.4) 

The constant in this equation may be omitted; p in the equation de- 
notes the perturbation pressure, additional to the value at infinity, 
upstream of the cascade. 

Differentiating the first equation of (1.11, with respect to c$, and 
the second with respect to q, adding the resulting expressions and 
taking into account the continuity equation (1.21, we obtain, as is well 
known, Laplace’s equation A$ = 0. 

Differentiating the first equation of (l.l), with respect to q and 
the second with respect to 5, and subtracting one expression from the 
other, we obtain 
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Here a is the angular velocity of rotation of velocity particles. The 
integral of Equation (1.5) must have the following form: 

52 = Q(T -i5_) (1.G) 

Equation (1.6) shows that vortices approaching the cascade from in- 
finity, as well as vortices created at the airfoils by changes of circu- 
lation, must flow downstream with a velocity U, without change of 
strength. 

Let the airfoils be oscillating and, generally speaking, be subjected 
to some small deformations. ‘lhe coordinates of points on an airfoil may 
be given as a function of the abscissa and time, f = f(c, r 1. Then the 
vertical velocity component on the airfoil, from the condition that there 
is no flow through the surface, is equal in linearized form to 

2, zz ;* f u 3f 
b 

(1.7) 

The boundary value of the vertical component of acceleration, corre- 
sponding to the second equation of (1.11, will be 

(1.8) 

In solving the problem with the help of the acceleration potential, 
the boundary condition (1.8) is satisfied in that the derivative 
a+/a n = a? of the function (p to be found must have a given value on 
the airfoil contour. The boundary condition for the velocity (1.7) need 
be satisfied at only one arbitrary point on the contour, since at the 
remaining points condition (1.7) will be satisfied automatically (with 
the satisfying of the boundary condition for the acceleration). 

&side this boundary condition, in flow with circulation it will be 
required that at the trailing edge the Chaplygin-Joukowski condition be 
satisfied, which, in the given case, and in view of (1.4)) is equivalent 
to the requirement that the function #I be continuous at the trailing 
edge. 

We shall assume the pressure at upstream infinity to be constant, and 
then 4 = 0. 

Since the airfoils will be thin and will have small camber, and the 
amplitude of their oscillation will be small, the boundary conditions 



Nonstotionory rotational flov 1279 

on an airfoil contour may be applied at the upper and lower edges of the 
slit which coincides with the airfoil chord. 

‘lhe solution of the problem consists of the determination of the non- 
stationary fields of velocity, acceleration, pressure, vorticity, and the 
calculation of the forces and moments acting on the airfoils of the 
cascade. 

In view of the linearity of the problem, the fields of the velocities 
c, accelerations a, pressures p, and vorticity Q, in the general case of 
fluid motion, may be regarded as the sum of the corresponding fields 
created for various reasons. We shall investigate the following fields: 

1) Flow field given. ‘lhe flow moves with the velocity U and carries a 
given system of free vortices. The velocity field induced by the vortices 
may be derived in the usual way. ‘Ihe pressure in the fluid will be con- 
stant. 

2) The field of the perturbations c, a and p, due to steady flow over 
the cascade of airfoils of given thickness and camber, with velocity II 
and at the mean angle of attack. 

3) l’he field of the perturbations c, a and p, due to nonstationary 
flow over the cascade of airfoils of zero thickness and camber. The per- 
turbation field is due to: (a) variations in the velocity of the approach- 
ing flow; (b) oscillations and deformations of the airfoils; and (c) the 
influence of the vortex sheet trailing from the airfoils in nonstationary 
flow. 

Since + must satisfy Laplace’s equation, conformal transformations 
may be introduced and the problem solved in a parametric plane. With the 
aid of the function 

(1.9) 

cash qz + I/sinh2 qz - sinhT$ cash-’ q 

we transform the cascade plane [ = 6 + iv into the parametric cascade 
plane 2 = z + iy. 

Corresponding to the cascade of slits in the c-plane, there will be a 
cascade of slits in the z-plane, but without stagger (6 = n/2). The 
length of the slits will still be equal to b = 2, and the gap to t. 

The condition d(/dz = 0 gives the points in the z-plane which cor- 
respond to the edges of the slits in the c-plane: 

sinh qxl,2 = + Sin $ sinh q (1.10) 
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2. We shall 
in the z-plane 
(,6 = n/2). Let 
coordinates be 

find the expression for the complex acceleration potential 
outside the cascade of slits, which are not staggered 
the y-axis be the axis of the cascade and the origin of 
the center of one of the slits. 

In[ll 
case may be represented as a series* 

it was shown that the complex acceleration potential in this 

q = nbl2t 

Here A,, and B are constant (with respect 
complex acceleration is given by the series 

to z) quantities. Then the 

iqBsinh2y 

t- 2siahq (z + 1) -fGnilq (r - l)rinh9 (2 + 1) 
(2.2) 

‘Ihe last term of (2.2) becomes real on the slits. ‘Ihe coefficients A, 
are determined by the known boundary values of the imaginary part of the 
complex acceleration on the edges of the slits. 

At infinity, the function represented in (2.2) by the series is of 
order l/&h* qz. On the upper and lower edges of the slits the imaginary 
parts of this function takes on equal values, equal to the boundary value 
of the normal acceleration. Ihe real parts of the function of the complex 
acceleration are equal in magnitude but opposite in sign. For represent- 
ing this component of the complex acceleration, use can be made of the 
method used in thin-wing theory [ 2 1 . 

+ In that case, if the z-plane is taken to be parametric, the real part 
of the complex potential must be equal to zero at the point slnh qx = 
sin p sinh 9, corresponding to the trailing edge in the c-plane. Then 
the last term in (2.1) must be 

Jl + sin2 psi& qsinhqz + sin ~siahqcoshqz 

v. rulb~ 9z -ain@q 
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A periodic analytic function, tending toward zero at upstream and 

downstream infinity, may be represented in the cascade plane by an inte- 
gral which is obtained from Cauchy’s integral 

F (2) = 2: \ F (6) coth q(c - z) dc L 
L 

(2.3) 

Here the integration is around one of the slits. Let us consider the 
function 

CB (2, T) = a (2, z) j&i& qz -skiI q (2.4) 

‘Ibis function is periodic and approaches zero at infinity. On the 
upper and lower edges of the slits the real part of this function, equal 
to a 

;T 
(x, r ) \/(sinh2q - sinh2qx), takes on values which are equal in mag- 

nitu e and opposite in sign. The imaginary part, equal to a%(X, r ) 
~(si.nh2q - sinh2qx), takes on equal values at corresponding points of 
the two edges. 

Then, using the integral (2.3) to represent the function 4b(z, r 1, and 
taking a slit to be the contour of integration, we obtain instead of the 
series in (2.2) one integral representation of the function in terms of 
the known boundary values of the normal acceleration. Leaving out 
the intermediate steps, we obtain the final expression for the complex 
acceleration 

‘lbe complex acceleration potential UJ is found by integrating (2.5) 
along an arbitrary curve from z = + 1, where the real part of w may be 
put equal to zero, and the inzzaterial imaginary constant 
away. 

cau be thrown 

Thus the complex acceleration potential consists of a term which de- 
pends only on the normal acceleration on the contour, and a term which 
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is determined by the kinematic condition of the motion by integrating 
(1.1). 

For example, in the case of a harmonically oscillating process (oscil- 
lation of the airfoils or flow of periodic vortex wakes over the cascade) 
the velocity and acceleration of the flow may be written in the form 

2:’ (2, z) = 21 (2) exp j or, a’ (z, z) = a (2) exp joz 

Here o is the frequency of the oscillatory process, j is the imaginary 
integer, not the same as the imaginary integer i. 

‘lhen integration of (1.1) under the condition that the velocity far 
ahead of the cascade is equal to Cl, and the normal velocity on the lead- 
ing edge of the airfoil is equal to vO exp jar , gives 

M 

u,,uej~~ = &k s a (- 2) e--jkz dz 

Here k = 0 b/2 II is the Strouha; number. 

(2.7) 

The further solution of the problem proceeds along usual lines [l 1. 
From (2.7) and (2.5), B can be determined. In Equation (2.6), separating 
the real part (with respect to i), we find the distribution of pressure. 
Integrating the distribution of pressure around the airfoil contours, we 
determine the nonstationary lift force. 

3. In the case of steady flow over the cascade, the normal accelera- 
tion on the contour will have only the convective term, which, according 
to (1.8), is equal to 

a II (x) = U”d2f = Ii{/2 
dX? 

(3.1) 

Here K= K(x) is the airfoil camber. ‘lhe camber being known, (2.5) 
makes it possible to find the acceleration field, and, with the help of 
(2.7), putting o = k = 0, to find the coefficient B. These transforma- 
tions can be carried out in general form. 

It is also possible to generalize the problem to the case where the 
normal accelerations on the upper and lower edges of the slits are not 
equal (the airfoils have different cambers on the convex and concave 
sides) . 

4. In the case of nonstationary vortex flow, the cascade may be taken 
to be made up of airfoils having zero thickness and camber (a cascade of 
plates), since the influence of thickness and camber can be attributed 
to stationary flow. 
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cascade of airfoils with zero stagger (/3 = n/2) 
waves flow periodically, coming from infinity with 
their front being perpendicular to the flow di- 

Consider the given fields in the absence of the cascade. Let the 
vertical velocity vary as in gusts, traveling with velocity U. lhe form 

of the gusts is given by the function 

These gusts are produced by traveling vorticity waves 

(4.2) 

In accordance with the second of equations (1.11, the vertical ac- 
celerations in the flow are equal to zero: 

(4.3) 

We assume the pressure field to be a constant everywhere. If a cascade 
is placed in the flow it will produce disturbances, since the airfoils 
are impenetrable, and the normal component of velocity on them must be 
equal to zero. 

The complex acceleration potential of the perturbed flow is, from 
(2.6), equal to (a,, s 0): 

Ihe coefficient B is determined from the condition that the vertical 
perturbation velocity on the airfoil is equal to -u(r - x/U). 

Let us investigate the case of a vertical gust, when the velocity 
varies according to a harmonic law 

(4.5) 

The general case can then be obtained by representing the gust by a 
Fourier series. 

Using (2.71, with the acceleration determined from the complex poten- 
tial (4.41, we obtain 

t 
‘R (k, 9) = 

.jk 

1 + jkedk 1 (k, q) 
W% 
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Here [ 1 I 

(4.7) 

‘lhe pressure field is then found by separating the real part (with 
respect to i) of (4.4). In particular, the distribution of pressure on 
an airfoil of the cascade is given by the expression 

p =pB 
iii9 (1 - 2) v sinhq(I+x) 

Note that the pressure-distribution law does not depend (in the linear- 
ized problem) on the form of the gust and the frequency of the approach- 
ing vorticity waves. 

The nonstationary lifting force acting on an airfoil of the cascade 
is found by integrating (4.8) over the airfoil contour: 

Lx_-4 BkSiphnb 
o b 2t (4.9) 

In the particular case of oscillation of a single wing (q = 0) the 
integral (4.7) is expressed by means of Hankel functions 

I (k, 0) = r ( I/s - 11 e--Sk-y dx = - -& [H,‘2’(k) + jH,‘“‘(k) ] - -$ e-ik 

i 

The function (4.6) becomes the function 

R (k, 0) = 23’ 
nk [Hb2) (k) + jHo(‘) (k)] 

(4.10) 

and gives the solution for a wing in a sinusoidal vertical gust which 
was obtained by Sears [ 3 I . 
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